Topic pour te fracasser ta tête en t'amusant ;-)

Forum > Communauté > Trucs qui servent à rien
Total : 338 Messages. Page n°2/23 - < 1 2 3 4 ... 23 >
Utilisateur(s) présent(s) sur ce sujet :
  • et 0 invités

malekian

Avatar de malekian

Hors Ligne

Membre Inactif depuis le 06/01/2020

Grade : [Nomade]

Inscrit le 03/03/2004
1766 Messages/ 0 Contributions/ 0 Pts

Envoyé par malekian le Vendredi 20 Février 2009 à 18:52


Je prend une balance. Je met une bague sur le pateau A et une autre sur la B. Je regarde si les plateaux sont en equilibres , puis je remet deux autre bague (une sur le A une autre sur le B)et je regarde si les plateaux sont equilibrés et ainsi de suite.... j'arrete quant la balance n'est plus a l'equilibre ...... c est ca non?

___________________






Lord_Darkmore

Avatar de Lord_Darkmore

Hors Ligne

Membre Inactif depuis le 15/09/2023

Grade : [Sortisan]

Inscrit le 01/06/2006
8539 Messages/ 0 Contributions/ 21 Pts

Envoyé par Lord_Darkmore le Vendredi 20 Février 2009 à 18:58


Ce n'est pas ça, mais connaissant déjà la réponse avant, je vais encore me taire un peu.

Pour vous faire travailler un peu les neurones, je vous propose une petite énigme un peu plus facile :

Un vieux chamelier malade et mourant, sentant venir sa fin prochaine, fait venir auprès de lui ses trois fils. Au premier il fait :
- Je te cède la moitié de mon troupeau :
Au second il offre le quart, et au troisième les deux neuvièmes.
Sauf que le délire lui avait fait oublier la composition de son troupeau : trente-cinq chameaux !
Cependant le vieux sage à qui les trois jeunes gens s'adressèrent pour les aider parvint à les contenter en respectant parfaitement les conditions du père. Comment s'y prit-il ?

PS : aucun chameau n'a été découpé dans l'affaire.

___________________


kamikazeur

Avatar de kamikazeur

Hors Ligne

Membre Inactif depuis le 19/09/2012

Grade : [Modo Forum]

Inscrit le 28/12/2004
2634 Messages/ 0 Contributions/ 19 Pts

Envoyé par kamikazeur le Vendredi 20 Février 2009 à 19:00


on a dit qu'on attendait que la devinette en cours soit trouvé pour passer la suivante, c'est pas marrant pour ceux quic onnaissent mais respecter ca un minimum sinon ca va etre le foutoir

malekian t'a le droit qu'a une seul pesé

___________________


malekian

Avatar de malekian

Hors Ligne

Membre Inactif depuis le 06/01/2020

Grade : [Nomade]

Inscrit le 03/03/2004
1766 Messages/ 0 Contributions/ 0 Pts

Envoyé par malekian le Vendredi 20 Février 2009 à 19:26


Le 20/02/2009, kamikazeur avait écrit ...

on a dit qu'on attendait que la devinette en cours soit trouvé pour passer la suivante, c'est pas marrant pour ceux quic onnaissent mais respecter ca un minimum sinon ca va etre le foutoir

malekian t'a le droit qu'a une seul pesé

Hum oui je vois ce n'est pas vraiment une seul pesé ce que je fais....

___________________






Superarcanis

Avatar de Superarcanis

Hors Ligne

Modérateur Inactif depuis le 06/12/2023

Modération : Arts, Articles

Grade : [Modo Forum]

Inscrit le 03/08/2005
7345 Messages/ 1 Contributions/ 0 Pts

Envoyé par Superarcanis le Vendredi 20 Février 2009 à 19:39


Une pesée, c'est "Je met un tas de bague d'un côté et un tas de bague de l'autre", et c'est censé donner la réponse ?

___________________



Dr-Tenma

Avatar de Dr-Tenma

Hors Ligne

Membre Inactif depuis le 06/11/2013

Grade : [Nomade]

Inscrit le 20/04/2007
4134 Messages/ 0 Contributions/ 3 Pts

Envoyé par Dr-Tenma le Vendredi 20 Février 2009 à 20:50


Ca existe une balance avec 10 plateaux?:o

___________________


kamikazeur

Avatar de kamikazeur

Hors Ligne

Membre Inactif depuis le 19/09/2012

Grade : [Modo Forum]

Inscrit le 28/12/2004
2634 Messages/ 0 Contributions/ 19 Pts

Envoyé par kamikazeur le Vendredi 20 Février 2009 à 21:05


Tenma t'es un genie
le sultan fait venir 5 serviteur avec une balance qui pese les bagues de 2 ouvriers differents et en même temps , une seule pesé

___________________


Theris

Avatar de Theris

Hors Ligne

Membre Inactif depuis le 10/03/2024

Grade : [Druide]

Inscrit le 26/10/2005
2313 Messages/ 0 Contributions/ 41 Pts

Envoyé par Theris le Vendredi 20 Février 2009 à 21:13


Autre solution :
Il prend deux bagues de deux différents artisans et les pèsent (une pesée).
Deux cas possibles :
-soit le coupable est repéré immédiatement et décapité.
-soit le coupable n'est pas repéré immédiatement, auquel cas il fait venir tous les artisans restants, leur prend toute leur fortune et les décapite. Le coupable est mort dans le tas.

___________________



Dr-Tenma

Avatar de Dr-Tenma

Hors Ligne

Membre Inactif depuis le 06/11/2013

Grade : [Nomade]

Inscrit le 20/04/2007
4134 Messages/ 0 Contributions/ 3 Pts

Envoyé par Dr-Tenma le Vendredi 20 Février 2009 à 21:17


Le 20/02/2009, kamikazeur avait écrit ...

Tenma t'es un genie
Je sais, je sais, on me le dit souvent.....

___________________


Ekrasios

Avatar de Ekrasios

Hors Ligne

Membre Inactif depuis le 20/09/2018

Grade : [Druide]

Inscrit le 02/05/2005
1557 Messages/ 0 Contributions/ 49 Pts

Envoyé par Ekrasios le Vendredi 20 Février 2009 à 21:19


Le 20/02/2009, Superarcanis avait écrit ...

Une pesée, c'est "Je met un tas de bague d'un côté et un tas de bague de l'autre", et c'est censé donner la réponse ?


une pesée, c'est: je compare 2 poids entre eux
et c'est sensé donner la réponse, faut juste bien choisir les poids


Keeki-jeeki

Avatar de Keeki-jeeki

Hors Ligne

Membre Inactif depuis le 28/09/2012

Grade : [Nomade]

Inscrit le 22/04/2005
1752 Messages/ 0 Contributions/ 4 Pts

Envoyé par Keeki-jeeki le Vendredi 20 Février 2009 à 22:16


Le 20/02/2009, Ekrasios avait écrit ...

Le 20/02/2009, Superarcanis avait écrit ...

Une pesée, c'est "Je met un tas de bague d'un côté et un tas de bague de l'autre", et c'est censé donner la réponse ?


une pesée, c'est: je compare 2 poids entre eux
et c'est sensé donner la réponse, faut juste bien choisir les poids


Non, une pesée c'est : je mesure la masse d'un tas. On connait la masse d'une bague normale, mais sans connaître la masse d'une bague truquée, je ne vois pas la solution. En se contentant de comparer ( avec une balance à plateaux), on ne peut évidemment pas déterminer qui des dix est le coupable ( puisqu'il n'y a que trois résultats différents possibles pour cette balance ).

[ Dernière modification par Keeki-jeeki le 20 fév 2009 à 22h21 ]

___________________


imagine

Avatar de imagine

Hors Ligne

Membre Inactif depuis le 26/07/2018

Grade : [Divinité]

Inscrit le 05/05/2006
1745 Messages/ 0 Contributions/ 49 Pts

Envoyé par imagine le Samedi 21 Février 2009 à 00:54


Salut

J'aurai donné la main à EKRASIOs étant donné que sa réponse est bonne... Mais puisque tout le monde semble réfléchir à l'énigme de miss Johannes... ozef...

Mais ce serait cool de respecter les quelques règles du topic quand même scrogneugneu.

Je réfléchis à l'énigme de Johannes mais j'ai du mal...

LD : je me venge sur toi : ton énigme on verra plus tard et si t'as la main.

A++

[ Dernière modification par imagine le 21 fév 2009 à 00h58 ]

___________________

imagine all the people... Je ne suis pas raciste mais il faut bien voir les choses en face : les enfants ne sont pas des gens comme nous

Lord_Darkmore

Avatar de Lord_Darkmore

Hors Ligne

Membre Inactif depuis le 15/09/2023

Grade : [Sortisan]

Inscrit le 01/06/2006
8539 Messages/ 0 Contributions/ 21 Pts

Envoyé par Lord_Darkmore le Samedi 21 Février 2009 à 09:28


Oki. Je donne la réponse pour l'énigme de Johannes. On prend une bague du premier, deux du second, trois du troisième, et ainsi de suite jusqu'au dixième (ou au neuvième même, ça suffit), et on pèse le tout... Soit x le poids enlevé à chaque bague du faussaire (normalement cette valeur devrait être incluse dans l'énoncé d'ailleurs, sinon le problème ne peut être résolu de manière satisfaisante). Si on pèse jusqu'au dixième, le total sera de 5500g - x si c'est le premier qui a trompé, 5500g-2x si c'est le second, et ainsi de suite (si on ne compte que jusqu'au neuvième ce sera 4500g).

___________________


knight_seb

Avatar de knight_seb

Hors Ligne

Modérateur Passif depuis le 22/06/2024

Modération : Combos

Grade : [Modo Forum]

Inscrit le 02/08/2003
3023 Messages/ 0 Contributions/ 210 Pts

Envoyé par knight_seb le Samedi 21 Février 2009 à 09:30


Je connais la solution de l'énigme de Johannes => 1 seule pesée est nécessaire.

Edit : zut, on vient de donner la solution ...

[ Dernière modification par knight_seb le 21 fév 2009 à 09h31 ]

___________________

A LIRE : Les règles du forum Stratégie
Joueur de Peasant/Pauper/EDH

chaudakh

Avatar de chaudakh

Hors Ligne

Modérateur Passif depuis le 16/07/2024

Modération : Arts, Decks

Grade : [Modo Forum]

Inscrit le 11/10/2003
7037 Messages/ 0 Contributions/ 605 Pts

Envoyé par chaudakh le Samedi 21 Février 2009 à 13:17


Le 21/02/2009, Lord_Darkmore avait écrit ...

Oki. Je donne la réponse pour l'énigme de Johannes. On prend une bague du premier, deux du second, trois du troisième, et ainsi de suite jusqu'au dixième (ou au neuvième même, ça suffit), et on pèse le tout... Soit x le poids enlevé à chaque bague du faussaire (normalement cette valeur devrait être incluse dans l'énoncé d'ailleurs, sinon le problème ne peut être résolu de manière satisfaisante). Si on pèse jusqu'au dixième, le total sera de 5500g - x si c'est le premier qui a trompé, 5500g-2x si c'est le second, et ainsi de suite (si on ne compte que jusqu'au neuvième ce sera 4500g).

J'ai pensé à un truc dans le genre mais le drame c'est que tu ne connais pas x .... On peut regarder une divisibilité par 2, 3 etc. mais ça ne t'avancera pas ... La solution proposée n'est donc pas satisfaisante car tu ne peux pas remonter à l'artisan malhonnete ...

Si par exemple il manque 12g , c'est 4 x 3 ou 3 x 4 ou 6 x 2 ou 2 x 6 ou 1 x 12 ? C'est le 4e artisan qui a pris 3g par bague ou le 3e artisan qui a pris 4g par bague ou le 6e artisan qui a pris 2g par bague ou le 2e artisan qui a pris 6g par bague ou le 1er artisan qui a pris 12g par bague?

Le truc auquel je pensais était de mettre 1 bague de l'artisan 1, 2 bague de l'artisan 2, 3 bague de l'artisan 3, 5 bague de l'artisan 4 et 7 bague de l'artisan 5 d'un coté et 1, 2 3 5 et 7 bagues des artisans 6 7 8 9 et 10 de l'autre coté ...

On suppose que le poids pris x d'une bague (en g) est inconnu mais premier avec 1,2,3,5 et 7. Ce n'est pas limitatif de le suposer entier ... mais premier avec 1,2,3,5 et 7 si ...

On sait à la pesée lequel des 2 groupes contient l'artisan malhonnete ... soit x la différence ... il suffit maintenant de tester une divisiblité par les nombres 1,2,3,5 et 7 qui sont premiers ...
comme le poids d'une bague est premier j'ai gagné (d'après le théorème de Gauss). Ex. si c'est divisible par 3 par ex, c'est l'artisan dont j'ai mis 3 bagues dans le plateau le plus léger qui est le fautif....
Quand x n'est pas premier avec 1,2,3,5 et 7 je ne sais pas faire pour le moment ...

Maintenant si l'énoncé est buggé, la devinette était inutile ...

[ Dernière modification par chaudakh le 21 fév 2009 à 19h51 ]

___________________


Total : 338 Messages. Page n°2/23 - < 1 2 3 4 ... 23 >
Espace Membre

Identifiant

Mot de passe

Se souvenir de moi